Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In Vitro Alkylation Methods for Assessing the Protein Redox State.

Identifieur interne : 000353 ( Main/Exploration ); précédent : 000352; suivant : 000354

In Vitro Alkylation Methods for Assessing the Protein Redox State.

Auteurs : Flavien Zannini [France] ; Jérémy Couturier [France] ; Olivier Keech [Suède] ; Nicolas Rouhier [France]

Source :

RBID : pubmed:28822125

Descripteurs français

English descriptors

Abstract

Cysteines are important residues for protein structure, function, and regulation. Owing to their modified reactivity, some cysteines can undergo very diverse redox posttranslational modifications, including the reversible formation of disulfide bonds, a widespread protein regulatory process as well exemplified in plant chloroplasts for Calvin-Benson cycle enzymes. Both core- and peripheral-photorespiratory enzymes possess conserved cysteines, some of which have been identified as being subject to oxidative modifications. This is not surprising considering their presence in subcellular compartments where the production of reactive species can be important. However, in most cases, the types of modifications and their biochemical effect on protein activity have not been validated, meaning that the possible impact of these modifications in a complex physiological context, such as photorespiration, remains obscure.We here describe a detailed set of protocols for alkylation methods that have been used so far to (1) study the protein cysteine redox state either in vitro by submitting purified recombinant proteins to reducing/oxidation treatments or in vivo by western blots on protein extracts from plants subject to environmental constraints, and its dependency on the two major reducing systems in the cell, i.e., the thioredoxin and glutathione/glutaredoxin systems, and (2) determine two key redox parameters, i.e., the cysteine pK a and the redox midpoint potential.

DOI: 10.1007/978-1-4939-7225-8_4
PubMed: 28822125


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In Vitro Alkylation Methods for Assessing the Protein Redox State.</title>
<author>
<name sortKey="Zannini, Flavien" sort="Zannini, Flavien" uniqKey="Zannini F" first="Flavien" last="Zannini">Flavien Zannini</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keech, Olivier" sort="Keech, Olivier" uniqKey="Keech O" first="Olivier" last="Keech">Olivier Keech</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France. nicolas.rouhier@univ-lorraine.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28822125</idno>
<idno type="pmid">28822125</idno>
<idno type="doi">10.1007/978-1-4939-7225-8_4</idno>
<idno type="wicri:Area/Main/Corpus">000313</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000313</idno>
<idno type="wicri:Area/Main/Curation">000313</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000313</idno>
<idno type="wicri:Area/Main/Exploration">000313</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In Vitro Alkylation Methods for Assessing the Protein Redox State.</title>
<author>
<name sortKey="Zannini, Flavien" sort="Zannini, Flavien" uniqKey="Zannini F" first="Flavien" last="Zannini">Flavien Zannini</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keech, Olivier" sort="Keech, Olivier" uniqKey="Keech O" first="Olivier" last="Keech">Olivier Keech</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France. nicolas.rouhier@univ-lorraine.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Methods in molecular biology (Clifton, N.J.)</title>
<idno type="eISSN">1940-6029</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkylation (MeSH)</term>
<term>Chloroplasts (drug effects)</term>
<term>Chloroplasts (genetics)</term>
<term>Chloroplasts (metabolism)</term>
<term>Cysteine (metabolism)</term>
<term>Dithiothreitol (chemistry)</term>
<term>Dithiothreitol (pharmacology)</term>
<term>Electrophoresis, Polyacrylamide Gel (methods)</term>
<term>Gene Expression (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione Disulfide (chemistry)</term>
<term>Glutathione Disulfide (pharmacology)</term>
<term>Hydrogen Peroxide (chemistry)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Kinetics (MeSH)</term>
<term>Maleimides (chemistry)</term>
<term>Maleimides (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alkylation (MeSH)</term>
<term>Chloroplastes (effets des médicaments et des substances chimiques)</term>
<term>Chloroplastes (génétique)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Disulfure de glutathion (composition chimique)</term>
<term>Disulfure de glutathion (pharmacologie)</term>
<term>Dithiothréitol (composition chimique)</term>
<term>Dithiothréitol (pharmacologie)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Maléimides (composition chimique)</term>
<term>Maléimides (pharmacologie)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (composition chimique)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Électrophorèse sur gel de polyacrylamide (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dithiothreitol</term>
<term>Glutathione Disulfide</term>
<term>Hydrogen Peroxide</term>
<term>Maleimides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Dithiothréitol</term>
<term>Maléimides</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Chloroplastes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chloroplastes</term>
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrophoresis, Polyacrylamide Gel</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloroplastes</term>
<term>Cystéine</term>
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Dithiothréitol</term>
<term>Maléimides</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Dithiothreitol</term>
<term>Glutathione Disulfide</term>
<term>Hydrogen Peroxide</term>
<term>Maleimides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alkylation</term>
<term>Gene Expression</term>
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alkylation</term>
<term>Cinétique</term>
<term>Expression des gènes</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cysteines are important residues for protein structure, function, and regulation. Owing to their modified reactivity, some cysteines can undergo very diverse redox posttranslational modifications, including the reversible formation of disulfide bonds, a widespread protein regulatory process as well exemplified in plant chloroplasts for Calvin-Benson cycle enzymes. Both core- and peripheral-photorespiratory enzymes possess conserved cysteines, some of which have been identified as being subject to oxidative modifications. This is not surprising considering their presence in subcellular compartments where the production of reactive species can be important. However, in most cases, the types of modifications and their biochemical effect on protein activity have not been validated, meaning that the possible impact of these modifications in a complex physiological context, such as photorespiration, remains obscure.We here describe a detailed set of protocols for alkylation methods that have been used so far to (1) study the protein cysteine redox state either in vitro by submitting purified recombinant proteins to reducing/oxidation treatments or in vivo by western blots on protein extracts from plants subject to environmental constraints, and its dependency on the two major reducing systems in the cell, i.e., the thioredoxin and glutathione/glutaredoxin systems, and (2) determine two key redox parameters, i.e., the cysteine pK
<sub>a</sub>
and the redox midpoint potential.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28822125</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>07</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-6029</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1653</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Methods in molecular biology (Clifton, N.J.)</Title>
<ISOAbbreviation>Methods Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>In Vitro Alkylation Methods for Assessing the Protein Redox State.</ArticleTitle>
<Pagination>
<MedlinePgn>51-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-1-4939-7225-8_4</ELocationID>
<Abstract>
<AbstractText>Cysteines are important residues for protein structure, function, and regulation. Owing to their modified reactivity, some cysteines can undergo very diverse redox posttranslational modifications, including the reversible formation of disulfide bonds, a widespread protein regulatory process as well exemplified in plant chloroplasts for Calvin-Benson cycle enzymes. Both core- and peripheral-photorespiratory enzymes possess conserved cysteines, some of which have been identified as being subject to oxidative modifications. This is not surprising considering their presence in subcellular compartments where the production of reactive species can be important. However, in most cases, the types of modifications and their biochemical effect on protein activity have not been validated, meaning that the possible impact of these modifications in a complex physiological context, such as photorespiration, remains obscure.We here describe a detailed set of protocols for alkylation methods that have been used so far to (1) study the protein cysteine redox state either in vitro by submitting purified recombinant proteins to reducing/oxidation treatments or in vivo by western blots on protein extracts from plants subject to environmental constraints, and its dependency on the two major reducing systems in the cell, i.e., the thioredoxin and glutathione/glutaredoxin systems, and (2) determine two key redox parameters, i.e., the cysteine pK
<sub>a</sub>
and the redox midpoint potential.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zannini</LastName>
<ForeName>Flavien</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Couturier</LastName>
<ForeName>Jérémy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keech</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/INRA, 54506, Vandoeuvre-lès-Nancy, France. nicolas.rouhier@univ-lorraine.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Mol Biol</MedlineTA>
<NlmUniqueID>9214969</NlmUniqueID>
<ISSNLinking>1064-3745</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008301">Maleimides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T8ID5YZU6Y</RegistryNumber>
<NameOfSubstance UI="D004229">Dithiothreitol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000478" MajorTopicYN="N">Alkylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004229" MajorTopicYN="N">Dithiothreitol</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008301" MajorTopicYN="N">Maleimides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Alkylation</Keyword>
<Keyword MajorTopicYN="Y">Cysteine</Keyword>
<Keyword MajorTopicYN="Y">Oxidative modification</Keyword>
<Keyword MajorTopicYN="Y">Redox potential</Keyword>
<Keyword MajorTopicYN="Y">pK a</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28822125</ArticleId>
<ArticleId IdType="doi">10.1007/978-1-4939-7225-8_4</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Suède</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Vandœuvre-lès-Nancy</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Zannini, Flavien" sort="Zannini, Flavien" uniqKey="Zannini F" first="Flavien" last="Zannini">Flavien Zannini</name>
</region>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Keech, Olivier" sort="Keech, Olivier" uniqKey="Keech O" first="Olivier" last="Keech">Olivier Keech</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000353 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000353 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28822125
   |texte=   In Vitro Alkylation Methods for Assessing the Protein Redox State.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28822125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020